首页 | 本学科首页   官方微博 | 高级检索  
     


Bilayer tellurene-metal interfaces
Authors:Hua Pang  Jiahuan Yan  Jie Yang  Shiqi Liu  Yuanyuan Pan  Xiuying Zhang  Bowen Shi  Hao Tang  Jinbo Yang  Qihang Liu  Lianqiang Xu  Yangyang Wang  Jing Lv
Abstract:Tellurene, an emerging two-dimensional chain-like semiconductor, stands out for its high switch ratio, carrier mobility and excellent stability in air. Directly contacting the 2D semiconductor materials with metal electrodes is a feasible doping means to inject carriers. However, Schottky barrier often arises at the metal–semiconductors interface, impeding the transport of carriers. Herein, we investigate the interfacial properties of BL tellurene by contacting with various metals including graphene by using ab initio calculations and quantum transport simulations. Vertical Schottky barriers take place in Ag, Al, Au and Cu electrodes according to the maintenance of the noncontact tellurene layer band structure. Besides, a p-type vertical Schottky contact is formed due to the van der Waals interaction for graphene electrode. As for the lateral direction, p-type Schottky contacts take shape for bulk metal electrodes(hole Schottky barrier heights(SBHs) ranging from 0.19 to 0.35 eV). Strong Fermi level pinning takes place with a pinning factor of 0.02. Notably, a desirable p-type quasi-Ohmic contact is developed for graphene electrode with a hole SBH of 0.08 eV. Our work sheds light on the interfacial properties of BL tellurene based transistors and could guide the experimental selections on electrodes.
Keywords:bilayer tellurene  Schottky barrier  quantum transport simulation  first-principles calculation
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《半导体学报》浏览原始摘要信息
点击此处可从《半导体学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号