首页 | 本学科首页   官方微博 | 高级检索  
     


Friction and wear properties of casting in-situ silicon particle reinforced ZA27 composites
Authors:Chen Tijun  Yuan Chengren  Fu Mingfeng  Ma Ying  Li Yuandong  Hao Yuan
Affiliation:Key Laboratory of Gansu Advanced Nonferrous Materials, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:The effects of silicon particle content and testing temperature on friction and wear properties of casting in-situ silicon particle reinforced ZA27 composites were investigated. The wear mechanisms were mainly discussed by observations of both worn surfaces and their side views. The results indicated that the variations of wear resistance with increasing of silicon particle content, at all of the testing temperatures applied, showed a similar tendency with a manner of non-monotonous change. It was surpdsed that the wear resistance decreased with the increase of silicon particle content from 2 vol.% to 5 vol.%, while it increased when the content was less than 2 vol.% or more than 5 vol.%. Similarly, the friction coefficient also did not change monotonously. The dominative wear mechanism changed from a relatively severe regime of plastic deformation accompanied by adhesion wear to a mild regime of smear, then to a very severe regime of severe plastic deformation induced wear, and finally again to a relatively mild regime of smear accompanied by abrasive wear as the silicon content increased. The wear resistance always decreased with elevating testing temperature, but the decrease ranges were different for the composites with different silicon contents. The friction coefficients changed irregularly for the different composites with the increase of testing temperature. Correspondingly, the wear mechanism alternated from a mild regime of smear accompanied by abrasive wear to a severe regime of plastic deformation accompanied by adhesion wear.
Keywords:in-situ composite  silicon particle  friction and wear  wear mechanism  hardness
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号