首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical characterization of benzocyclobutene polymers for electric micromachines
Authors:Modafe  A Ghalichechian  N Kleber  B Ghodssi  R
Affiliation:Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA;
Abstract:An approach using interdigitated capacitors for electrical characterization of CYCLOTENE, a spin-on low-k benzocyclobutene (BCB)-based polymer is introduced and the effect of moisture uptake is investigated. The dielectric constant of CYCLOTENE is extracted from capacitance measurements with a systematic error less than 0.1%, giving an average value of 2.49 with a standard deviation of 1.5%. The dielectric constant increases by 1.2% after a humidity stress of 85% RH at 85/spl deg/C. The I-V characteristics of CYCLOTENE show a dependency of breakdown strength and leakage current on the geometrical dimensions of the device under test. A breakdown strength of 225V//spl mu/m and 320 V//spl mu/m for 2-/spl mu/m and 3-/spl mu/m finger spacing, respectively, and a leakage current of a few to tens of pA are measured. The I-V characteristics degrade drastically after the humidity stress, showing a breakdown strength of 100 V//spl mu/m and 180 V//spl mu/m for 2-/spl mu/m and 3-/spl mu/m finger spacing, respectively, and a maximum increase in the leakage current as large as one order of magnitude. The maximum performance and long-term reliability of an electric micromachine are adversely affected by the degradation of the breakdown voltage and the leakage current after moisture absorption. It is expected, however, that the electrical efficiency is improved using BCB-based polymers with negligible dependency on moisture absorption.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号