首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Fish Gelatin and Tea Polyphenol Coating on the Spoilage and Degradation of Myofibril in Fish Fillet During Cold Storage
Authors:Xiao Feng  Voon Kunn Ng  Marta Mik?-Krajnik  Hongshun Yang
Affiliation:1.Food Science and Technology Programme, Department of Chemistry,National University of Singapore,Singapore,Republic of Singapore;2.National University of Singapore (Suzhou) Research Institute,Suzhou,People’s Republic of China;3.Industrial and Food Microbiology, Faculty of Food Science,University of Warmia and Mazury in Olsztyn,Olsztyn,Poland
Abstract:Fish fillet is easily spoiled during storage. Antimicrobial edible coating of gelatin extracted from fish skins and bones and tea polyphenol (TP) was developed to inhibit the spoilage of fish fillet during cold storage. For coating containing 0.4 % TP and 1.2 % gelatin, the pH only slightly increased from 6.17 at day 0 to 6.32 at day 17 of cold storage, while the pH of control coating increased to 6.87 at day 17. Atomic force spectrometry was used to analyse the nanostructure of myofibril, which is the major component of fish muscle. The results showed that the length of myofibril from 0.4 % TP and 1.2 % gelatin group was greater than 15 μm, while the diameter and height were 3.38 and 0.59 μm, respectively, which exhibited the most intact nanostructure after 17 days of cold storage. Meanwhile, matrix-assisted laser desorption–ionisation–time-of-flight mass spectrometry result showed that TP delayed the degradation of myosin light chain 3 and troponin T in myofibril. Gas chromatography–mass spectrometry of volatile organic compounds (VOCs) also showed that 0.4 % TP and 1.2 % gelatin coating group had minimal production of spoilage markers, such as 1-octen-3-ol, 2-methyl propanoic acid and dimethyl sulfide. The microbial analysis showed that the aerobic mesophilic/psychrotrophic count, yeasts and moulds of 0.4 % TP and 1.2 % gelatin group were significantly lower than the control group. Therefore, 0.4 % TP and 1.2 % gelatin coating showed the best antimicrobial effect and can be used to maintain the nanostructure of fish fillet and prevent the spoilage during cold storage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号