首页 | 本学科首页   官方微博 | 高级检索  
     


High-Legume Wheat-Based Matrices: Impact of High Pressure on Starch Hydrolysis and Firming Kinetics of Composite Breads
Authors:Concha Collar  Alessandro Angioloni
Affiliation:1.Cereals and Cereal-Based Products, Food Science Department,Instituto de Agroquímica y Tecnología de Alimentos (CSIC),Paterna,Spain
Abstract:The significance of high hydrostatic pressure (HHP) processing on the physico-chemical—techno-functional and firming kinetics—parameters and nutritional properties—nutritional composition and “in vitro” starch digestibility—of highly replaced wheat flour breads by chickpea, pea and soybean flours was investigated, and the power/effectiveness of HHP in partially replacing structural agents (gluten and/or hydrocolloids) was discussed. Incorporation of pressured legume slurries (350 MPa, 10 min) at 42% of wheat replacement into bread formulation provoked a general increase in initial crumb hardness and browning of the crust with a concomitant explicit reduction of moisture, whiteness of the crumb and bread specific volume, but a slower in vitro starch digestibility with prominent formation of slowly digestible starch and resistant starch, compared to their counterparts prepared by using a conventional gluten/carboxymethyl cellulose (CMC)-added breadmaking recipe/process. Pressured breads with no gluten but 3% CMC in the formulation kept higher sensory ratings, softer initial texture and lower firming profiles on ageing than pressured breads with no gluten nor CMC. HHP has proven to be an effective technology to partially replace structuring agents (CMC and/or gluten) in high-legume wheat-based matrices providing sensorially acceptable breads with medium physico-chemical quality profile but enhanced formation of nutritionally relevant starch fractions and slower crumb firming kinetics on ageing.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号