On adaptive minimum probability of error linear filter receiversfor DS-CDMA channels |
| |
Authors: | Psaromiligkos I.N. Batalama S.N. Pados D.A. |
| |
Affiliation: | Dept. of Electr. Eng., State Univ. of New York, Buffalo, NY; |
| |
Abstract: | Receiver architectures in the form of a linear filter front-end followed by a hard-limiting decision maker are considered for DS-CDMA communication systems. Based on stochastic approximation concepts a recursive algorithm is developed for the adaptive optimization of the linear filter front-end in the minimum BER sense. The recursive form is decision driven and distribution free. For additive white Gaussian noise (AWGN) channels, theoretical analysis of the BER surface of linear filter receivers identifies the subset of the linear filter space where the optimal receiver lies and offers a formal proof of guaranteed global optimization with probability one for the two-user case. To the extent that the output of a linear DS-CDMA filter can be approximated by a Gaussian random variable, a minimum-mean-square-error optimized linear filter approximates the minimum BER solution. Numerical and simulation results indicate that for realistic AWGN DS-CDMA systems with reasonably low signature cross-correlations the linear minimum BER filter and the MMSE filter exhibit approximately the same performance. The linear minimum BER receiver is superior, however, when either the signature cross-correlation is high or the background noise is non-Gaussian |
| |
Keywords: | |
|
|