首页 | 本学科首页   官方微博 | 高级检索  
     

不平衡数据知识挖掘:类分布对支持向量机分类的影响
引用本文:郑恩辉,李平,宋执环. 不平衡数据知识挖掘:类分布对支持向量机分类的影响[J]. 信息与控制, 2005, 34(6): 703-708
作者姓名:郑恩辉  李平  宋执环
作者单位:浙江大学工业控制技术国家重点实验室,浙江,杭州,310027
摘    要:基于标准支持向量机及其启发,提出并证明支持向量数(率)和边界支持向量数(率)的界,并分别推广到正例类和反例类.在此基础上,证明正例的分类精度依概率小于反例的分类精度.虚拟数据仿真和Benchmark数据仿真表明本文所提方法的有效性和结论的正确性.

关 键 词:不平衡数据  有偏分类器  支持向量机
文章编号:1002-0411(2005)06-0703-06
收稿时间:2005-05-16
修稿时间:2005-05-16

Mining Knowledge from Unbalanced Data: Effect of Class Distribution on SVM Classification
ZHENG En-hui,LI Ping,SONG Zhi-huan. Mining Knowledge from Unbalanced Data: Effect of Class Distribution on SVM Classification[J]. Information and Control, 2005, 34(6): 703-708
Authors:ZHENG En-hui  LI Ping  SONG Zhi-huan
Affiliation:National Laboratory oflndustrial Control Technology, Zhejiang University, Hangzhou 310027, China
Abstract:Based on standard support vector machines(SVMs), the bound of both the support vector number(and rate) and boundary support vector number(and rate)is proposed and proved.Then the bounds are extended to positive class and negative class respectively.On the basis of the bounds,it is proved that the positive class yields poorer classification and predictive accuracy than the negative class does.Simulation results of both artificial data sets and benchmark data sets show that the conclusion and method in this paper is true and effective.
Keywords:unbalanced data set  biased classifier  support vector machine(SVM)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《信息与控制》浏览原始摘要信息
点击此处可从《信息与控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号