首页 | 本学科首页   官方微博 | 高级检索  
     

小波包分解与Fuzzy ART神经网络在磨削振动监测中的应用
引用本文:昝涛, 王民, 李刚, 费仁元. 小波包分解与Fuzzy ART神经网络在磨削振动监测中的应用[J]. 北京工业大学学报, 2008, 34(7): 678-681,707.
作者姓名:昝涛  王民  李刚  费仁元
作者单位:1.北京工业大学 北京市先进制造技术重点实验室, 北京 100022
基金项目:国家自然科学基金,北京市自然科学基金
摘    要:针对磨削加工的特点,通过小波包进行振动信号细化分解,提取各尺度能量作为特征量.利用无导师学习的Fuzzy ART神经网络进行振动异常的辨识,在发生未知模式振动异常时,网络将产生新的类报警.与传统监测方法相比,该方法能对已知和未知的振动异常进行辨识报警,在实际磨削过程监控应用中效果良好.

关 键 词:磨削加工  小波包  模式识别  Fuzzy ART神经网络
收稿时间:2006-12-18

Application of Wavelet Packet and Fuzzy ART Neural Network to Vibration Exception Monitoring for Grinding Process
ZAN Tao, WANG Min, LI Gang, FEI Ren-yuan. Application of Wavelet Packet and Fuzzy ART Neural Network to Vibration Exception Monitoring for Grinding Process[J]. Journal of Beijing University of Technology, 2008, 34(7): 678-681,707.
Authors:ZAN Tao  WANG Min  LI Gang  FEI Ren-yuan
Affiliation:1.Beijing Key Lab for Advanced Manufacturing Technology, Beijing University of Technology, Beijing 100022, China
Abstract:In this paper wavelet packet technique is used to decompose the vibration signals of grinding process.Since these decomposed signals in every band have different energy,they can be used to represent the vibration exception with fuzzy ART neural network.The fuzzy ART neural network can generate a new clustering to give an alarm when vibration exception of unknown pattern appears.Compared with traditional methods this method can identify the known and unknown pattern exceptions of grinding process.The result of practical application shows that this method is very efficient.
Keywords:grinding  wavelet packet  pattern recognition  fuzzy ART neural network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京工业大学学报》浏览原始摘要信息
点击此处可从《北京工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号