Abstract: | Abstract. The limiting process of partial sums of residuals in stationary and invertible autoregressive moving-average models is studied. It is shown that the partial sums converge to a standard Brownian motion under the assumptions that estimators of unknown parameters are root- n consistent and that innovations are independent and identically distributed random variables with zero mean and finite variance or, more generally, are martingale differences with moment restrictions specified in Theorem 1. Applications for goodness-of-fit and change-point problems are considered. The use of residuals for constructing nonparametric density estimation is discussed. |