首页 | 本学科首页   官方微博 | 高级检索  
     


Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro
Authors:SR Rittling  HN Matsumoto  MD McKee  A Nanci  XR An  KE Novick  AJ Kowalski  M Noda  DT Denhardt
Affiliation:Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
Abstract:We have used homologous recombination in embryonic stem cells to generate mice with a targeted disruption of the osteopontin (Opn, or Spp1, for secreted phosphoprotein 1) gene. Mice homozygous for this disruption fail to express osteopontin (OPN) as assessed at both the mRNA and protein level, although an N-terminal fragment of OPN is detectable at extremely low levels in the bones of -/- animals. The Opn -/- mice are fertile, their litter size is normal, and they develop normally. The bones and teeth of animals not expressing OPN are morphologically normal at the level of light and electron microscopy, and the skeletal structure of young animals is normal as assessed by radiography. Ultrastructurally, proteinaceous structures normally rich in OPN, such as cement lines, persist in the bones of the Opn-/- animals. Osteoclastogenesis was assessed in vitro in cocultures with a feeder layer of calvarial osteoblast cells from wild-type mice. Spleen cells from Opn-/- mice cells formed osteoclasts 3- to 13-fold more frequently than did control Opn+/+ cells, while the extent of osteoclast development from Opn -/- bone marrow cells was about 2- to 4-fold more than from the corresponding wild-type cells. Osteoclast development occurred when Opn-/- spleen cells were differentiated in the presence of Opn-/-osteoblasts, indicating that endogenous OPN is not required for this process. These results suggest that OPN is not essential for normal mouse development and osteogenesis, but can modulate osteoclast differentiation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号