首页 | 本学科首页   官方微博 | 高级检索  
     

邻域约束高斯混合模型的模糊聚类图像分割*
引用本文:赵泉华,张洪云,赵雪梅,李玉. 邻域约束高斯混合模型的模糊聚类图像分割*[J]. 模式识别与人工智能, 2017, 30(3): 214-224. DOI: 10.16451/j.cnki.issn1003-6059.201703003
作者姓名:赵泉华  张洪云  赵雪梅  李玉
作者单位:辽宁工程技术大学 测绘与地理科学学院 遥感科学与应用研究院 阜新 123000
基金项目:国家自然科学基金面上项目(No.41271435)、国家自然科学基金青年基金项目(No.41301479)、辽宁省自然科学基金项目(No.2015020190)资助
摘    要:针对传统模糊聚类分割方法无法有效模拟数据分布特征的问题,提出基于邻域约束高斯混合模型的模糊聚类图像分割算法.利用高斯分布刻画聚类内像素光谱测度统计特征,定义像素与其邻域像素相关性的先验概率,并作为高斯混合模型中各高斯分量权重系数,构建包含特征场邻域作用的高斯混合模型.利用高斯分量描述像素与聚类间的非相似性测度,建立基于高斯混合模型的模糊聚类目标函数.在传统模糊聚类方法基础上,采用高斯混合模型定义像素与聚类间的非相似性测度,并在高斯混合模型中融入邻域作用,有效解决数据具有多峰值特征的问题.最后通过实验验证文中算法的准确性.

关 键 词:高斯混合模型(GMM)   邻域约束   模糊聚类   图像分割  
收稿时间:2016-09-28

Fuzzy Clustering Image Segmentation Based on Neighborhood Constrained Gaussian Mixture Model
ZHAO Quanhua,ZHANG Hongyun,ZHAO Xuemei,LI Yu. Fuzzy Clustering Image Segmentation Based on Neighborhood Constrained Gaussian Mixture Model[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(3): 214-224. DOI: 10.16451/j.cnki.issn1003-6059.201703003
Authors:ZHAO Quanhua  ZHANG Hongyun  ZHAO Xuemei  LI Yu
Affiliation:Institute for Remote Sensing Science and Application, School of Geomatics, Liaoning Technical University, Fuxin 123000
Abstract:The characteristics of data can not be simulated in the traditional fuzzy clustering method effectively. Gaussian mixture model with neighbor constraints is introduced to solve the problem. Gaussian distribution is used to characterize the statistical characteristics of spectral measure. The correlation between the pixels and their neighborhood pixels are defined as prior probability and used as weight coefficients of each component in Gaussian mixture model. Finally, a Gaussian mixture model with neighborhood constraints in feature field is constructed. Log weighted Gaussian component in the mixture model is used as dissimilar measurement between the pixels and clusters, and a fuzzy clustering objective function is constructed based on Gaussian mixture model. Neighborhood constraints are introduced as a weight of component in traditional Gaussian mixture model and combined with fuzzy clustering method. Thus, the problem of multi-peak distribution of data is solved. Finally, the accuracy of the proposed algorithm is verified by experiments.
Keywords:Gaussian Mixture Model(GMM)   Neighborhood Constraint   Fuzzy Clustering   Image Segmentation  
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号