首页 | 本学科首页   官方微博 | 高级检索  
     

基于两层分类器的恶意网页快速检测系统研究
作者姓名:王正琦  冯晓兵  张驰
作者单位:1. 中国科学技术大学,安徽 合肥 230026;2. 中国科学院电磁空间信息重点实验室,安徽 合肥 230026
基金项目:国家自然科学基金资助项目(61202140);国家自然科学基金资助项目(61328208)
摘    要:针对当前传统静态恶意网页检测方案在面对海量的新增网页时面临的压力,引入了两段式的分析检测过程,并依次为每段检测提出相应的特征提取方案,通过层次化使用优化的朴素贝叶斯算法和支持向量机算法,设计并实现了一种兼顾效率和功能的恶意网页检测系统——TSMWD(two-step malicious Web page detection system)。第一层检测系统用于过滤大量的正常网页,其特点为效率高、速度快、更新迭代容易,真正率优先。第二层检测系统追求性能,对于检测的准确率要求较高,时间和资源的开销上适当放宽。实验结果表明,该架构能够在整体检测准确率基本不变的情况下,提高系统的检测速度,在时间一定的情况下,接纳更多的检测请求。

关 键 词:恶意网页检测  网络安全  机器学习  特征提取  
点击此处可从《网络与信息安全学报》浏览原始摘要信息
点击此处可从《网络与信息安全学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号