首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群优化的核主元分析特征的提取技术
引用本文:魏秀业,潘宏侠,王福杰. 基于粒子群优化的核主元分析特征的提取技术[J]. 振动、测试与诊断, 2009, 29(2): 162-168
作者姓名:魏秀业  潘宏侠  王福杰
作者单位:中北大学机械工程与自动化学院,太原,030051
摘    要:针对核主元分析在参数设置上的盲目性,提出应用粒子群优化算法优化核函数参数.并将核主元分析应用于特征提取中.首先建立核函数参数优化的数学模型,然后应用加速度自适应粒子群优化算法对其寻优,并通过Iris数据集进行仿真研究,验证其提取特征的有效性.将优化的核主元分析方法应用于齿轮箱典型故障的特征提取中,结果表明:参数优化的核主元分析能有效降低齿轮箱特征向量的维数,较线性主元分析取得更好的故障识别效果.该方法在机械故障信号的非线性特征提取中具有优势.

关 键 词:粒子群优化  核主元分析  特征提取  核函数参数  故障诊断  齿轮箱

Feature Extraction Based on Kernel Principal Component Analysis Optimized by Particle Swarm Optimization Algorithm
Wei Xiuye,Pan Hongxia,Wang Fujie. Feature Extraction Based on Kernel Principal Component Analysis Optimized by Particle Swarm Optimization Algorithm[J]. Journal of Vibration,Measurement & Diagnosis, 2009, 29(2): 162-168
Authors:Wei Xiuye  Pan Hongxia  Wang Fujie
Abstract:Aimed at the blind setting of parameter in kernel principal component analysis (KPCA), kernel function parameter optimized by particle swarm optimization algorithm (PSO) was proposed, and KPCA was applied to feature extraction. An objective function model of kernel function parameter was constructed firstly, then a particle swarm optimization algorithm with adaptive accelerate (CPSO) was used to optimize it, and the iris data were applied to the optimization method for simulation, which testified the KPCA effectivity in feature extraction. The optimized KPCA was applied to feature extraction of typical gearbox faults. The results indicate that the optimized KPCA can effectively reduce the dimension of feature vector of gearbox, and it has a better fault classification performance than linear principal component analysis (PCA). This method has an advantage in nonlinear feature extraction of mechanical failure signal.
Keywords:particle swarm optimization kernel principal component analysis feat ure extraction kernel function parameter fault diagnosis gearbox
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《振动、测试与诊断》浏览原始摘要信息
点击此处可从《振动、测试与诊断》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号