首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of bistatic intersystem interference due to scattering by hydrometeors on tropical paths
Authors:M. O. Ajewole  L. B. Kolawole  G. O. Ajayi
Affiliation:1. Department of Physics, Federal University of Technology, P.M.B. 704, Akure, Nigeria;2. Department of Electronic and Electrical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
Abstract:Evaluation of bistatic transmission loss cumulative distribution is very useful in assessing the effect of interference due to hydrometeor scatter between the communication links operating at the same frequency. Out of the many factors that could be responsible for the intersystem interference between the microwave communication systems, this paper presents the result of computation of intersystem interference resulting from the hydrometeor scatter on tropical paths. Interference is computed in terms of the cumulative distribution of transmission loss. The effect of varying common volume formed by the intersection of the antenna beams on the transmission loss is investigated. Results show that at frequencies higher than 10 GHz, for antenna separation longer than 100 km, common volume will be in the ice region, leading to a higher interference level at the interfered terminal. Also, results obtained show that because total path attenuation at 30 GHz is lower than at 20 GHz (this is due to the decrease in water vapour attenuation in the 22·2–30 GHz window), transmission loss tends to be higher at 20 GHz than at 30 GHz. In addition, increasing the antenna gain of the interfering station will result in the increasing interference level at the interfered station. Evaluation of the effective transmission loss shows that this parameter gives a better assessment of interference on the tropical propagation paths noted for high-intensity convective precipitation. In this case, the effective transmission loss has been evaluated in terms of the joint occurrence of additional rain attenuation on the wanted path, and the cumulative distribution of transmission loss on the intersecting paths. Copyright © 1999 John Wiley & Sons, Ltd.
Keywords:hydrometeor scattering  bistatic interference  transmission loss  tropical precipitation  microwave and millimetre wave frequencies  rain attenuation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号