首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic and rheokinetic study of dicarboxylic fatty acid chain extension using a dioxazoline coupling agent
Authors:Yvan Chalamet  Mohamed Taha
Abstract:A kinetic and rheokinetic study of the condensation reaction of a dicarboxylic fatty acid, Pripol®1009 (C36), and a dioxazoline coupling agent (1,3‐Phenylene)‐bis(2‐Oxazoline) (OO) was made. The kinetic study showed a similar reactivity of the two acid groups of C36 and also a similar reactivity of the two oxazoline groups of OO. The reaction kinetics can be described using a second‐order kinetic model. A kinetic constant k = 16.1 × 10−4 mol−1 s−1 at 156°C with an activation energy Ea = 80.6 kJ mol−1 was calculated. A rheological evaluation of the reactants and the obtained polymers showed that the reactive system had Newtonian behavior during all the reaction times for shear rates lower than 100 s−1. Using this kinetic modeling and measured viscosity evolution of the reactive system at different temperatures, rheokinetic models were proposed for viscosity evolution with the molar mass evolution of the synthesized polymer and the reaction time and conversion. Viscosity evolution of the reactive system during the first 10 min, corresponding to a typical mean residence time in reactive extrusion, were calculated using the proposed rheokinetic model. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1017–1024, 1999
Keywords:dicarboxylic fatty acid  dioxazoline  condensation  kinetic  rheokinetic  reactive extrusion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号