Abstract: | When a liquid is placed on a surface acoustic wave (SAW) propagation surface, a longitudinal wave is radiated into the liquid, and the liquid begins to vibrate stream, jet, and atomize. This phenomenon is known as SAW streaming. In this paper, we describe experimental results concerning the temperature of a thin liquid layer during SAW generation. The results reveal that the temperature of the liquid is a function of the SAW amplitude, which is determined by the applied voltage. This means that the liquid temperature can be controlled by the applied voltage. We conclude that a novel microliquid heating system can be realized using the SAW device. |