Abstract: | A simple powder forging process was presented herein to fabricate an Fe-14Cr-4.5Al-2W-0.4Ti-0.5Y2O3 ODS FeCrAI alloy.The forged alloy exhibits a high density that exceeds 97%of the theoretical density.The ODS alloy was investigated in terms of the residual porosity,morphology and phase structure of oxide nanoparticles,impact toughness and tensile properties.It was found that refined grains were obtained during powder forging.A residual porosity less than 1.1%has no impact on the precipitation of oxide nanoparticles.The average diameter of the oxide particles is 7.99 nm,with a number density of 2.75 x 1022 m-3.Almost all of the oxides are identified as orthorhombic YAlO3 particles.The refined grains and uniformly distributed oxide nanoparticles enable the alloy to show excellent mechanical strength and ductility below 700℃,and enable the ductile-to-brittle transition temperature to be close to room temperature.However,a slight decrease in strength at 1000℃and the Charpy upper shelf energy has been suggested to be due to the residual porosity.These results indicate that powder forging can be used as a promising technique for the fabrication of ODS alloys. |