首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of in-flight particle characteristics and substrate temperature on the formation mechanisms of hypereutectic Al-Si-Cu coatings prepared by supersonic atmospheric plasma spraying
Authors:Peng-fei He  Guo-zheng Ma  Hai-dou Wang  Ling Tang  Ming Liu  Yu Bai  Yu Wang  Jian-jiang Tang  Dong-yu He  Hai-chao Zhao  Tian-yang Yu
Abstract:Hypereutectic Al-Si-Cu coatings were prepared by supersonic atmospheric plasma spraying to enhance the surface performance of lightweight alloys.To find out optimum process conditions and achieve desirable coatings,this work focuses on the influence of three important parameters (in-flight par-ticle temperature,impact velocity,and substrate temperature) on the collected splats morphology,coatings microstructure and microhardness.Results show that appropriate combinations of temper-ature and velocity of in-flight particles cannot only completely melt hypereutectic Al-Si-Cu particles,especially the primary Si phase,but also provide the particles with sufficient kinetic energy.Thus,the optimized coating consists of 98.6 % of fully-melted region with nanosized coupled eutectic and 0.9 %of porosity.Increasing the substrate deposition temperature promotes the transition from inhomoge-neous banded microstructure to homogeneous equiaxed microstructure with a lower porosity level.The observations are further interpreted by a newly developed phase-change heat transfer model on quan-titatively revealing the solidification and remelting behaviors of several splats deposited on substrate.Besides,phase evolutions including the formation of supersaturated α-Al matrix solid solution,growth of Si and Al2Cu phases at different process conditions are elaborated.An ideal microstructure (low frac-tions of unmelted/partially-melted regions and defects) together with solid solution,grain refinement,and second phase strengthening effects contributes to the enhanced microhardness of coating.This inte-grated study not only provides a framework for optimizing Al-Si based coatings via thermal spraying but also gives valuable insights into the formation mechanisms of this class of coating materials.
Keywords:Thermal sprayed coatings  Al-Si alloys  In-flight particle characteristics  Substrate temperature  Process control
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号