首页 | 本学科首页   官方微博 | 高级检索  
     


Multilevel resistive switching and synaptic plasticity of nanoparticulated cobaltite oxide memristive device
Authors:Tukaram DDongale  Atul CKhot  Ashkan VTakaloo  Kyung Rock Son  Tae Geun Kim
Abstract:Multilevel resistive switching(RS)is a key property to embrace the full potential of memristive devices for non-volatile memory and neuromorphic computing applications.In this study,we employed nanopar-ticulated cobaltite oxide(Co3O4)as a model material to demonstrate the multilevel RS and synaptic learning capabilities because of its multiple and stable redox state properties.The Pt/Co3O4/Pt memris-tive device exhibited tunable RS properties with respect to different voltages and compliance currents(CC)without the electroforming process.That is,the device showed voltage-dependent RS at a higher CC whereas CC-dependent RS was observed at lower CC.The device showed four different resistance states during endurance and retention measurements and non-volatile memory results indicated that the CC-based measurement had less variation.Besides,we investigated the basic and complex synap-tic plasticity properties using the analog current-voltage characteristics of the Pt/Co3O4/Pt device.In particular,we mimicked the potentiation-depression and four-spike time-dependent plasticity(STDP)rules such as asymmetric Hebbian,asymmetric anti-Hebbian,symmetric Hebbian,and symmetric anti-Hebbian learning rules.The results of the present work indicate that the cobaltite oxide is an excellent nanomaterial for both multilevel RS and neuromorphic computing applications.
Keywords:Multilevel resistive switching  Synaptic plasticity  STDP  Cobaltite oxide  Memristive device
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号