首页 | 本学科首页   官方微博 | 高级检索  
     

软性电路板金面缺陷的无监督检测
引用本文:王庆香,李迪,张舞杰,叶峰. 软性电路板金面缺陷的无监督检测[J]. 光学精密工程, 2010, 18(4): 981-987
作者姓名:王庆香  李迪  张舞杰  叶峰
作者单位:华南理工大学,机械与汽车工程学院,广东,广州,510641;广州中医药大学,信息技术学院,广东,广州,510006;华南理工大学,机械与汽车工程学院,广东,广州,510641
摘    要:为实现软性电路板(FPC)金面缺陷的准确自动检测,提出了一种以Gabor滤波器和Mean Shift聚类算法为基础的完全无监督FPC金面缺陷检测方法。首先,用Gabor滤波器组、数学形态学与Gaussian平滑处理抽取待检测图像的多维特征;然后,使用主元分析(PCA)将每个像素特征维数降为二维;最后,使用Mean Shift方法对二维特征数据进行聚类并将聚类的结果转化为二值图像。整个检测过程无需预先知道缺陷的类型和FPC金面的纹理类型,是一种完全无监督的检测方法。对带有各种缺陷的FPC金面进行检测实验,结果表明,该方法能够准确地将各类缺陷区域从背景区域中分离出来,具有自动缺陷检测系统所要求的识别能力强、稳定性高的特点。

关 键 词:缺陷检测  Gabor滤波器  Mean  Shift聚类
收稿时间:2009-06-11
修稿时间:2009-09-07

Unsupervised defect detection for gold surface of flexible printed board
WANG Qing-xiang,LI Di,ZHANG Wu-jie,YE Feng. Unsupervised defect detection for gold surface of flexible printed board[J]. Optics and Precision Engineering, 2010, 18(4): 981-987
Authors:WANG Qing-xiang  LI Di  ZHANG Wu-jie  YE Feng
Affiliation:1. School of Mechanical and Automotive Engineering,South China University of Technology, Guangzhou 510641, China
2. School of Information Technology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
Abstract:A completely unsupervised defect detection method is proposed based on the Gabor filters and Mean Shift clustering to achieve the accurate automatic defect detection of a FPC gold surface. Firstly,the multi-dimension characteristics of an image to be detected are extracted by a series of processing steps including Gabor filter banks, morphological open and Gaussian smoothing. Then, the Principal Component Analysis (PCA) is used to reduce the pixel characteristics from multi-dimension to 2-D for reducing computation time in the next clustering. Finally, Mean Shift method is applied to cluster pixels with 2-D characteristics and the results can be divided into defect and non-defect groups to produce the binary image. The whole process needs to neither predefine the type of defects nor the texture type of FPC gold surface, which can be defined as a completely unsupervised method of detecting defects. A number of images of FPC gold surfaces with a variety of defects have been tested. Detection results show that the proposed method can accurately separate all types of defect regions from the background and has the characteristics of high stability and strong ability to identify defects.
Keywords:Mean
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号