首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-center European evaluation of HIV testing on serum and saliva samples
Authors:C Fran?ois-Gérard  R Thortensson  P Luton  P Zumpe  M Maniez-Montreuil  AB Massip  MO Saelen  D Sondag-Thull
Affiliation:Department of Human Nutrition, University of Southampton, UK. slang@soton.ac.uk
Abstract:Sulphur dioxide (SO2) is an air pollutant implicated in the initiation of asthmatic symptoms. Glutathione (GSH) has been proposed to play a role in detoxification of SO2 through the sulfitolysis of glutathione disulphide (GSSG) to S-sulphoglutathione (GSSO3-). Rats were exposed to concentrations of SO2 between 5 and 100 ppm for 5 hr a day between 7 and 28 days. Lung injury as assessed by bronchoalveolar lavage and tissue GSH status were evaluated. SO2 5 ppm failed to elicit any lung injury or inflammatory response but did deplete GSH pools in lung, liver, heart and kidney. Activities of gamma-glutamylcysteine synthetase (GCS), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GRed) in lung were lowered relative to those in control animals. In liver, GRed activity was decreased. SO2 50 ppm exposure also failed to elicit injury or inflammation but did lower inflammatory cell numbers in the circulation. Rats exposed to 50 ppm SO2 maintained tissue GSH status, but activities of GCS, GPx, GRed and gamma-glutamyltranspeptidase in lung and hepatic GRed and GPx were significantly lower than in control rats. Unaltered GST activity in lung and liver was suggestive of an impairment of the sulfitolysis reaction in these animals, perhaps through lower substrate flux through the GPx reaction, as GSSO3- is a known inhibitor of GST in the rat. Rats exposed to 100 ppm SO2 exhibited evidence of inflammation (120-fold increase in neutrophil numbers recovered in lavage fluid) and like the 5 ppm exposed rats had lower tissue GSH concentrations and GSH-related enzyme activities in lung. We conclude that sulfitolysis of GSSG does occur in vivo during SO2 exposure and that SO2, even in the absence of pulmonary injury, is a potent glutathione depleting agent.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号