首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of fatigue loading-confining stress unloading rate on marble mechanical behaviors: An insight into fracture evolution analyses
Affiliation:1. Beijing Key Laboratory of Urban Underground Space Engineering, Department of Civil Engineering, School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China;2. State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing, 100083, China;3. Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China
Abstract:Rocks in underground works usually experience rather complex stress disturbance. For this, their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions. The effects of stress disturbances on rock geomechanical behaviors under fatigue loading conditions and triaxial unloading conditions have been reported in previous studies. However, little is known about the dependence of the unloading rate on fatigue loading and confining stress unloading (FL-CSU) conditions that influence rock failure. In this paper, we aimed at investigating the fracture behaviors of marble under FL-CSU conditions using the post-test X-ray computed tomography (CT) scanning technique and the GCTS RTR 2000 rock mechanics system. Results show that damage accumulation at the fatigue stage can influence the final fracture behaviors of marble. The stored elastic energy for rock samples under FL-CSU tests is relatively larger compared to those under conventional triaxial tests, and the dissipated energy used to drive damage evolution and crack propagation is larger for FL-CSU tests. In FL-CSU tests, as the unloading rate increases, the dissipated energy grows and elastic energy reduces. CT scanning after the test reveals the impacts of the unloading rate on the crack pattern and a fracture degree index is therein defined in this context to represent the crack dimension. It shows that the crack pattern after FL-CSU tests depends on the unloading rate, and the fracture degree is in agreement with the analysis of both the energy dissipation and the amount of energy released. The effect of unloading rate on fracture evolution characteristics of marble is revealed by a series of FL-CSU tests.
Keywords:Fatigue loading  Confining stress unloading  Unloading rate  Energy evolution  Computed tomography (CT) scanning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号