首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOv5网络模型的夜间车辆检测研究
作者姓名:张奕博  张雅丽
作者单位:中国人民公安大学信息网络安全学院
摘    要:为解决夜间场景下视频监控目标检测在实际应用时准确率不高这一问题,提出改进的YOLOv5算法。首先,建立了真实夜间场景目标的数据集,该数据集有2000张图像,分为了机动车、非机动车和车牌三个类别,以8∶2的比例均匀随机分为训练集和测试集,将夜间目标的图像放入改进的YOLOv5模型中训练,最终达到在夜间检测目标的目的;改进的YOLOv5利用了K-means++聚类算法生成自适应锚框,提高对夜间目标样本的聚类效率。其次,将改进的CBAM注意力机制与特征提取网络进行融合以获取夜间目标的重要特征。最后,将Bottleneck替换成GSBottleneck模块,利用GSConv轻量化的优势减少网络模型的计算量与参数量。结果表明,通过原YOLOv5网络模型算法训练后得到的mAP值为86.69%,改进后的YOLOv5网络模型算法训练后得到的mAP值为91.98%,三种被检测类别:机动车、非机动车和车牌的检测准确精度与原版算法相比分别提升了2.00、6.66、7.19个百分点,改进的YOLOv5网络模型可以为夜间场景下车辆特征的检测提供较好的技术支持。

关 键 词:目标检测  YOLOv5  夜间目标  聚类算法  轻量化  注意力机制
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号