摘 要: | 线云定位方法能保护场景隐私,但也存在被隐私攻击算法破解的风险。该攻击算法能从线云恢复近似点云,但其计算效率较低。针对该问题,提出了一种并行优化算法,并对其运行时间和加速比进行了分析。具体来说,分别采用SPMD模式和流水线模式实现了CPU多核并行和GPGPU并行。然后,进一步结合数据并行模式实现了异构计算,以达到最高的并行度。实验结果表明,并行优化算法加速比最大为15.11,最小为8.20;相比原算法,并行优化算法的还原点云相对误差控制在原误差的0.4%以内,保证了算法的精度。该研究对线云隐私攻击算法以及其他密度估计问题、不同场景下的线云隐私保护算法等有重要意义和参考价值。
|