首页 | 本学科首页   官方微博 | 高级检索  
     

一种融合用户偏好和社交活跃度的推荐算法
引用本文:李玲玲,黄 俊,王 粤. 一种融合用户偏好和社交活跃度的推荐算法[J]. 电讯技术, 2021, 61(6): 750-758. DOI: 10.3969/j.issn.1001-893x.2021.06.015
作者姓名:李玲玲  黄 俊  王 粤
作者单位:重庆邮电大学 通信与信息工程学院,重庆400065
基金项目:国家自然科学基金资助项目(61671095)
摘    要:为有效解决传统推荐算法精度低的问题,提出了一种融合用户偏好和社交活跃度的概率矩阵分解推荐算法(Probabilistic Matrix Factorization Recommendation Algorithm Combining User Prefer-ence and Social Activity,UPSA-P...

关 键 词:社交网络  概率矩阵分解  用户偏好  社交活跃度  评分预测

A recommendation algorithm combining user preference and social activity
LI Lingling,HUANG Jun,WANG Yue. A recommendation algorithm combining user preference and social activity[J]. Telecommunication Engineering, 2021, 61(6): 750-758. DOI: 10.3969/j.issn.1001-893x.2021.06.015
Authors:LI Lingling  HUANG Jun  WANG Yue
Affiliation:School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
Abstract:To effectively solve the problem of poor accuracy of traditional recommendation algorithm,a probabilistic matrix factorization recommendation algorithm combining user preference and social activity(UPSA-PMF) is proposed.When calculating the preference trust between users through user rating data,the common item balance factor and the popular item penalty factor are used for improvement.When calculating the trust in social networks,the relationship between social activity and user trust is considered,and social activity is used as a penalty factor to modify user trust.The preference trust degree and the trust degree in the social network are dynamically combined to obtain the final trust degree.The final degree of trust is combined with the probability matrix model to realize the recommendation.Experiments show that the improved algorithms are better than the existing recommendation algorithms,which effectively improves the quality of recommendations.
Keywords:social network  probabilistic matrix factorization  user preference  social activity  score prediction
本文献已被 万方数据 等数据库收录!
点击此处可从《电讯技术》浏览原始摘要信息
点击此处可从《电讯技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号