首页 | 本学科首页   官方微博 | 高级检索  
     


Plasmonic Nickel Nanoantennas
Authors:Jianing Chen  Pablo Albella  Zhaleh Pirzadeh  Pablo Alonso‐González  Florian Huth  Stefano Bonetti  Valentina Bonanni  Johan Åkerman  Josep Nogués  Paolo Vavassori  Alexandre Dmitriev  Javier Aizpurua  Rainer Hillenbrand
Affiliation:1. CIC nanoGUNE Consolider, 20018 Donostia‐San Sebstián, Spain;2. Centro de Fisica de Materiales (CSIC‐UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia‐San Sebastián, Spain;3. Department of Applied Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden;4. Neaspec GmbH, Bunsenstrasse 5, 82152 Munich, Germany;5. Materials Physics, Royal Institute of Technology (KTH), Electrum 229, 164 40 Kista, Sweden;6. Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden;7. CIN2(ICN‐CSIC) and Universitat Autónoma de Barcelona, Catalan Institute of Nanotechnology (ICN), Campus UAB, 08193 Bellaterra (Barcelona), Spain;8. Institució Catalana de Recerca i Estudis Avan?ats (ICREA), Barcelona, Spain;9. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
Abstract:The fundamental optical properties of pure nickel nanostructures are studied by far‐field extinction spectroscopy and optical near‐field microscopy, providing direct experimental evidence of the existence of particle plasmon resonances predicted by theory. Experimental and calculated near‐field maps allow for unambiguous identification of dipolar plasmon modes. By comparing calculated near‐field and far‐field spectra, dramatic shifts are found between the near‐field and far‐field plasmon resonances, which are much stronger than in gold nanoantennas. Based on a simple damped harmonic oscillator model to describe plasmonic resonances, it is possible to explain these shifts as due to plasmon damping.
Keywords:plasmonics  optical antennas  magnetic nanoparticles  near‐field optical imaging  scattering‐type scanning near‐field optical microscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号