首页 | 本学科首页   官方微博 | 高级检索  
     


Quantifying the Nanomachinery of the Nanoparticle–Biomolecule Interface
Authors:Helena de Puig  Stefania Federici  Salmaan H. Baxamusa  Paolo Bergese  Kimberly Hamad‐Schifferli
Affiliation:1. Department of Biological Engineering and the Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA;2. Institut Quimic de Sarrià, Universitat Ramon Llull Via Augusta 390, 08017 Barcelona, Spain;3. Chemistry for Technologies Laboratory and INSTM University of Brescia, Via Branze, 38, 25123 Brescia, Italy
Abstract:A study is presented of the nanomechanical phenomena experienced by nanoparticle‐conjugated biomolecules. A thermodynamic framework is developed to describe the binding of thrombin‐binding aptamer (TBA) to thrombin when the TBA is conjugated to nanorods. Binding results in nanorod aggregation (viz. directed self‐assembly), which is detectable by absorption spectroscopy. The analysis introduces the energy of aggregation, separating it into TBA–thrombin recognition and surface‐work contributions. Consequently, it is demonstrated that self‐assembly is driven by the interplay of surface work and thrombin‐TBA recognition. It is shown that the work at the surface is about ?10 kJ mol?1 and results from the accumulation of in‐plane molecular forces of pN magnitude and with a lifetime of <1 s, which arises from TBA nanoscale rearrangements fuelled by thrombin‐directed nanorod aggregation. The obtained surface work can map aggregation regimes as a function of different nanoparticle surface conditions. Also, the thermodynamic treatment can be used to obtain quantitative information on surface effects impacting biomolecules on nanoparticle surfaces.
Keywords:nanorods  nanomachinery  surface work  self‐assembly  nanoparticle–  biomolecule interface
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号