首页 | 本学科首页   官方微博 | 高级检索  
     


Spatial variability of thermal regimes and other environmental determinants of stream fish communities in the Great Lakes Basin,Ontario, Canada
Authors:C Chu  N E Jones
Affiliation:1. Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada;2. Aquatic Research and Development Section, Ontario Ministry of Natural Resources, DNA Building, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
Abstract:Temperature is one of the most important environmental variables in stream ecosystems because it affects the growth, survival and distribution of stream biota. This study examined if the spatial variability of thermal regimes and 18 other environmental variables were associated with fish communities in watersheds throughout the Great Lakes Basin (GLB), Ontario. The thermal regimes were defined as regimes 1, 2 and 3 and had maximum water temperatures of 26.4, 28.4 and 23.5°C, and spring warming rates of 0.20, 0.12 and 0.10 °C d?1, respectively. The spatial variability of the thermal regimes (VTR) within the watersheds was summarized into four VTR groups: S1, S2, M23 and M123. Stream sites in S1 watersheds had temperatures characteristic of regime 1 whereas stream sites in S2 watersheds followed regime 2. M23 watersheds had sites with a mix of regimes 2 and 3 whereas M123 watersheds had all three thermal regimes at sites throughout watersheds. Canonical correspondence analysis (CCA) indicated that 16% of the variation in fish communities was related to the spatial VTR in the watersheds. Forward selection CCA indicated that elevation, the S1 VTR group, sparse forest cover, wetland area, base flow index (groundwater discharge potential), flow and industrial stress explained 42% of the variance in the fish communities. Simplified indicator species analysis (ISA) showed that different species could be used as indicators for each of the VTR groups. Human activities such as industrial development, deforestation, groundwater withdrawal and flow alteration all may affect the environmental variables related to stream fish communities. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:streams  thermal regime  spatial variability  fish communities  Great Lakes Basin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号