首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the load reduction potential of two trailing edge flap controls using CFD
Authors:Joachim Heinz  Niels N. Sørensen  Frederik Zahle
Affiliation:Ris? DTU National Laboratory for Sustainable Energy, Wind Energy Department, Roskilde, Denmark
Abstract:In this work, a 2D aero‐servo‐elastic model of an airfoil section with 3 degrees of freedom (DOF) based on the 2D CFD solver EllipSys2D to calculate the aerodynamic forces is utilized to calculate the load reduction potential of an airfoil equipped with an adaptive trailing edge flap (ATEF) and subjected to a turbulent inflow signal. The employed airfoil model corresponds to a successfully tested prototype airfoil where piezoelectric actuators were used for the flapping. In the present investigation two possible control methods for the flap are compared in their ability to reduce the fluctuating normal forces on the airfoil due to a 4 s turbulent inflow signal and the best location of the measurement point for the respective control input is determined. While Control 1 uses the measurements of a Pitot tube mounted in front of the leading edge (LE) as input, Control 2 uses the pressure difference between the pressure and suction side of the airfoil measured at a certain chord position. Control 1 achieves its maximum load reduction of RStd(Fy) = 76.7% for the shortest Pitot tube of the test, i.e. a Pitot tube with a length of 0.05% of the chord length. Control 2 shows the highest load reduction of RStd(Fy) = 77.7% when the pressure difference is measured at a chord position of approximately 15%. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:trailing edge flaps  load alleviation  fatigue loads  control  CFD  wind turbine
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号