首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical study of the solidification process in biological tissue with blood flow and metabolism effects by the dual phase lag model
Authors:Moradi Amir  Ahmadikia Hossein
Affiliation:Young Researchers Club, Islamic Azad University, Arak Branch, Iran. amirmoradi_hs@yahoo.com
Abstract:The bioheat transfer with phase change in biological tissues during the freezing process is simulated by the dual phase lag conduction heat transfer model. A numerical algorithm based on the enthalpy method is established to solve the solidification of biological tissues. The linearly temperature-dependent enthalpy (non-isothermal phase change) is considered here. The results of the parabolic heat conduction model for a slice of cucumber are compared with the experimental data. A comparison between dual phase lag and hyperbolic solutions with small values of relaxation times is applied in order to verify the corresponding parabolic solutions accuracy of the dual phase lag and hyperbolic solutions. The heating source effect owing to blood perfusion and metabolic heat on the heat transfer in a biological tissue subject to freezing process is studied. The relaxation time has an important influence on the transient temperature and temperature gradient. A major discrepancy among bioheat transfer models is found for zones closer to the cooling boundary. The heat source term, owing to blood flow and metabolism in a phase change problem in the biological tissue, has a significant influence on thermal effects of the subject tissue.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号