首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of Didodecylmethylcarboxyl Betaine and Its Application in Surfactant–Polymer Flooding
Authors:Zheng-gang Cui  Xiang-rui Du  Xiao-mei Pei  Jian-zhong Jiang  Feng Wang
Affiliation:1. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, People??s Republic of China
Abstract:Enhanced crude oil recovery by chemical flooding has been a main measure for postponing the overall decline of crude oil output in China, and surfactant-polymer (SP) flooding may replace alkali-surfactant-polymer flooding in the future for avoiding the undesired effects of using alkali. In this paper the synthesis of a surfactant with a large hydrophobe, didodecylmethylcarboxyl betaine (diC12B), and its adaptability in SP flooding were investigated. The results show that diC12B can be synthesized by reaction of didodecylmethyl amine, a product commercially available, with chloroacetic acid in the presence of NaOH, with a resulting yield as high as 80?wt% under appropriate conditions. With double dodecyl chain diC12B is highly surface active as displayed by its low CMC, 3.7?×?10?6?mol?L?1, low ??CMC, 27?mNm?1, as well as high adsorption and small cross section area (??0.25?nm2) at both air/water and oil/water interfaces at 25?°C. By mixing with conventional hydrophilic surfactants diC12B can be well dissolved in Daqing connate water and reduce the Daqing crude oil/connate water interfacial tension to about 10?3?mN?m?1 at 45?°C in a wide total surfactant concentration range, from 0.01 to 0.5 wt%. And a tertiary oil recovery, 18?±?1.5?% OOIP, can been achieved by SP flooding using natural cores without adding any alkaline agent or neutral electrolyte. DiC12B seems thus to be a good surfactant for enhanced oil recovery by SP flooding.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号