Improved efficiency of the chemical bath deposition method during growth of ZnO thin films |
| |
Authors: | Mauricio Ortega-Ló pezAlejandro Avila-Garc?& #x a,M.L. Albor-Aguilera,V.M.Sá nchez Resendiz |
| |
Affiliation: | a Departamento de Ingenier?́a Eléctrica, Centro de Investigación y Estudios Avanzados del IPN, Avenida IPN No. 2508, 07360 México D.F., Mexico b Escuela Superior de F?́sica y Matemáticas del IPN, UPALM, Zacatenco, 07738 México D.F., Mexico |
| |
Abstract: | Chemical bath deposition (CBD) is an inexpensive and low temperature method (25-90 °C) that allows to deposit large area semiconductor thin films. However, the extent of the desired heterogeneous reaction upon the substrate surface is limited first by the competing homogeneous reaction, which is responsible for colloidal particles formation in the bulk solution, and second, by the material deposition on the CBD reactor walls. Therefore, the CBD method exhibits low efficiency in terms of profiting the whole amount of starting materials. The present work describes a procedure to deposit ZnO thin films by CBD in an efficient way, since it offers the possibility to minimize both the undesirable homogeneous reaction in the bulk solution and the material deposition on the CBD reactor walls. In a first stage, zinc peroxide (ZnO2) crystallizing with cubic structure is obtained. This compound shows a good average transparency (90%) and an optical bandgap of 4.2 eV. After an annealing process, the ZnO2 suffers a transformation toward polycrystalline ZnO with hexagonal structure and 3.25 eV of optical bandgap. The surface morphology of the films, analyzed by atomic force microscope (AFM), reveals three-dimensional growth features as well as no colloidal particles upon the surface, therefore indicating the predominance of the heterogeneous reaction during the growth. |
| |
Keywords: | A. Oxides A. Thin films B. Chemical synthesis D. Optical properties D. Microstructure |
本文献已被 ScienceDirect 等数据库收录! |
|