首页 | 本学科首页   官方微博 | 高级检索  
     

基于旅行商问题的粒子群优化算法
引用本文:刘强,姜麟,吴云. 基于旅行商问题的粒子群优化算法[J]. 微计算机信息, 2012, 0(3): 165-166,178
作者姓名:刘强  姜麟  吴云
作者单位:昆明理工大学理学院
摘    要:旅行商问题(Traveling Salesman Problem,TSP)是一类离散的、NP(Non-deterministic Polynomial)完全的组合优化问题,有着广泛的应用背景和许多的求解方法。该文介绍了用粒子群优化算法求解旅行商问题,并与模拟退火算法和遗传算法相比较,通过实验结果说明了粒子群优化算法在解决大规模组合优化问题上的有效性和可行性。

关 键 词:旅行商问题  粒子群优化算法  组合优化

Particle Swarm Optimization Algorithm Based on Traveling Salesman Problem
LIU Qiang,JIANG Lin,WU Yun. Particle Swarm Optimization Algorithm Based on Traveling Salesman Problem[J]. Control & Automation, 2012, 0(3): 165-166,178
Authors:LIU Qiang  JIANG Lin  WU Yun
Affiliation:(Faculty Of Science,Kunming University Of Science and Technology,Kunming,Yunnan,650093,China)
Abstract:Traveling Salesman Problem is a class of discrete and Non-deterministic Polynomial complete combinatorial optimization problem.It has widely applied and numerous methods for solving.This paper introduces using Particle Swarm Optimization Algorithm for solving TSP problem,and compare with Simulated Annealing Algorithm and Genetic Algorithm.Through the analysis of experiment results,explains the Particle Swarm Optimization Algorithm is effectiveness and feasibility in solving large-scale combinatorial optimization problems.
Keywords:traveling salesman problem  particle swarm optimization algorithm  combinatorial optimization
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号