Covariant discretization of axis-symmetric linear optical systems |
| |
Authors: | Atakishiyev N M Nagiyev S M Vicent L E Wolf K B |
| |
Affiliation: | Centro de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos. |
| |
Abstract: | We propose a discretization strategy for systems with axial symmetry. This strategy replaces the continuous position coordinates by a discrete set of sensor points, on which the discrete wave fields transform covariantly with the group of 2 x 2 symplectic matrices. We examine polar arrays of sensors (i.e., numbered by radius and angle) and find the complete, orthonormal sets of discrete-waveguide Meixner functions; when the sensors come closer together, these tend to the Laguerre eigenmodes of the continuous waveguide. In particular, the fractional Hankel transforms are discretized in order to define the fractional Hankel-Meixner transforms and similarly for all axis-symmetric linear optical maps. Coherent states appear in the discrete cylindrical waveguide. Covariant discretization leads to the same Wigner phase-space function for both the discrete and the continuum cases. This reinforces a Lie-theoretical model for the phase space of discrete systems. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|