首页 | 本学科首页   官方微博 | 高级检索  
     


The Dislocation Structure of a Single-Crystal γ + γ′ Two-Phase Alloy After Tensile Deformation
Authors:Z P Luo  Yali Tang  Z Wu  M J Kramer  R W McCallum
Affiliation:

* Beijing Institute of Aeronautical Materials, Beijing 100095, People's Republic of China

? Argonne National Laboratory, Argonne, IL 60439 USA

? Ames Laboratory, USDOE, 39 Wilhelm, Iowa State University, Ames, IA 50011 USA

Abstract:The dislocation structures of an industrial single-crystal γ + γ′ two-phase alloy DD3 after tensile deformation from room temperature to 1273K were studied by transmission electron microscopy. The strength of this alloy decreased with an increase in the temperature, and showed a strength peak at 1033K. At room temperature, the dislocations shearing the γ′ particles were found to be 1/3<112> partial dislocations on the dodecahedral slip system <112>{111}. Some dislocation pairs on the cubic <110>{100} system that blocked the glide of dislocations were found at a medium temperature of 873K. As a result, dislocation bands were formed. Shearing of γ′ particles by 1/3<112> partial dislocations on the dodecahedral slip system <112>{111} was also found at this temperature. At the peak temperature of 1033K, because of the strong interaction between dislocations on the {111} and {100} planes, the extent of dislocation bands with high dislocation densities was extensive. The 1/3<112> partial dislocations on the dodecahedral slip system <112>{111} also existed. When the temperature reached the high temperature of 1133K, the range of dislocation bands was limited. The γ′ particles were sheared by <110> dislocation pairs on the octagonal <110>{111} system and the cubic <110>{100} system. At 1273K, the regular hexagonal dislocation networks were formed in the γ matrix and at the γ/γ′ interface. The Burgers vectors of the network were found to be b1 = 1/2110], b2 = 1/21–10], b3 = 100], and the last one was formed by the reaction of b1 + b2b3. Dislocations shearing the γ′ particles were found to be <110> dislocation pairs on the octagonal system <110>{111} and cubic slip system <110>{100} at 1273K.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号