Gastro-intestinal protein loss in late survivors of Fontan surgery and other congenital heart disease |
| |
Authors: | SA Thorne J Hooper M Kemp J Somerville |
| |
Affiliation: | Research Institute of Technology, Konoike Construction Co., Ltd., Ibaraki, Japan. |
| |
Abstract: | A 2,048-bp nucleotide sequence containing a gene coding for an enzyme that degraded guar gum from Bacillus circulans K-1 was identified by polymerase chain reaction walking. This G-gene consisted of 1,551 nucleotides coding for a protein with Mr 55,242. The enzyme was overexpressed in Escherichia coli JM109 cells by the cloning the G-gene downstream of the lac Z promoter of pUC19. The molecular mass of recombinant G-enzyme estimated by SDS-PAGE was 62 KDa, close to that from strain K-1. Analysis of the recombinant enzyme showed GalNAc, Xyl, GlcNAc, Man, Glc, and Gal to account for 1.7%, 14.4%, 6.1%, 3.2%, 54.2%, and 10.4%, respectively, of the total monosaccharides. Polyacrylamide gel electrophoresis of this enzyme with staining gave a red band. The results suggested that the sugars accounted for the differences in the molecular masses. The recombinant enzyme had two kinds of N-terminal sequences, Thr-Met-Ile-Thr-Pro-Ser-Phe-Ala-Ser-Gly-Phe-Tyr-Val-Ile and Ile-Thr-Pro-Ser-Phe-Ala-Ser-Gly-Phe-Tyr-Val-Ile-Gly-Thr. Comparison of these sequences with the deduced N-terminal sequence coded for the G-gene showed that the amino acid, first Met, of the lac Z gene or the next residues Thr-Met in the recombinant enzyme were absent in the native enzyme. Methionines near and at the N-terminus of the mature protein probably were digested by methionine aminopeptidases of E. coli after translation. The properties of recombinant G-enzyme were similar to those of the enzyme from K-1 cells. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|