首页 | 本学科首页   官方微博 | 高级检索  
     

基于GWO-LSSVM算法的海底管道腐蚀预测模型研究
引用本文:金龙,曾德智,孟可雨,肖国清,谭四周,张昇. 基于GWO-LSSVM算法的海底管道腐蚀预测模型研究[J]. 石油与天然气化工, 2022, 51(2): 70-76
作者姓名:金龙  曾德智  孟可雨  肖国清  谭四周  张昇
作者单位:油气藏及地质开发工程国家重点实验室·西南石油大学;中海石油中国中国有限公司深圳分公司;中国石油天然气股份有限公司东北销售分公司
基金项目:国家自然科学基金面上项目“静载、振动与腐蚀作用下H2S/CO2气井完井管柱螺纹密封面的力化学损伤机制研究”(51774249)
摘    要:目的 针对海底管道腐蚀影响因素存在信息叠加与相互耦合、作用机理复杂、腐蚀速率预测难度大的问题,提出一种灰狼优化(GWO)算法优化最小二乘支持向量机(LSSVM)的腐蚀速率预测新模型.方法 该模型利用灰狼优化算法对最小二乘支持向量机的核参数与惩罚因子进行迭代寻优,减少参数选择的盲目性,提升预测精度,应用该模型对海水挂片腐...

关 键 词:海水腐蚀  腐蚀预测  灰狼优化算法(GWO)  最小二乘支持向量机(LSSVM)
收稿时间:2021-09-08

Research on corrosion prediction model of submarine pipeline based on GWO-LSSVM algorithm
Jin Long,Zeng Dezhi,Meng Keyu,Xiao Guoqing,Tan Sizhou,Zhang Sheng. Research on corrosion prediction model of submarine pipeline based on GWO-LSSVM algorithm[J]. Chemical Engineering of Oil and Gas, 2022, 51(2): 70-76
Authors:Jin Long  Zeng Dezhi  Meng Keyu  Xiao Guoqing  Tan Sizhou  Zhang Sheng
Affiliation:State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan, China;CNOOC China China Limited Shenzhen Branch, Shenzhen, Guangdong, China; PetroChina Northeast Sales Branch, Langfang, Hebei, China
Abstract:ObjectiveAiming at the problems of information superposition and mutual coupling of submarine pipeline corrosion factors, complex action mechanisms, and difficult corrosion rate prediction, this article proposes a corrosion rate prediction new model of gray wolf optimization(GWO) algorithm optimized least square support vector machine (LSSVM). MethodsThe model uses the gray wolf optimization algorithm to iteratively optimize the kernel parameters and penalty factors of the least squares support vector machine to reduce the blindness of parameter selection and improve the prediction accuracy. The model is applied to 50 sets of samples of seawater coupon corrosion experiment. The learning and prediction are carried out, and the prediction accuracy is compared with traditional least square support vector machine and particle swarm optimization minimum support vector machine. ResultsThe average absolute error, mean square error, and root mean square error of the gray wolf optimized least squares support vector machine are all smallest, and the coefficient of determination is closer to 1, which indicate that the prediction result of the model is closest to the real value, and the algorithm efficiency is high. ConclusionsThe model constructed in this article can be used in the current corrosion prediction driven by big data in oil and gas engineering, and the results can provide a decision-making technical support for the corrosion and protection of submarine pipelines.
Keywords:seawater corrosion   corrosion prediction   grey wolf optimization algorithm (GWO)   least squares support vector machine (LSSVM)
点击此处可从《石油与天然气化工》浏览原始摘要信息
点击此处可从《石油与天然气化工》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号