首页 | 本学科首页   官方微博 | 高级检索  
     


1D Time-Domain Solution for Seismic Ground Motion Prediction
Authors:Jian-Ye Ching  Steven D Glaser
Affiliation:11Grad. Student Res., Dept. of Civ. and Envir. Engrg., Univ. of California, Berkeley, CA 94720.
22Assoc. Prof., Dept. of Civ. and Envir. Engrg., Univ. of California, Berkeley, CA.
Abstract:A full time-domain solution for predicting earthquake ground motion based on the 1D viscoelastic shear-wave equation is presented. The derivation results in a time-domain equation in the form of an infinite impulse response filter. A solution in the time domain has several advantages including causality, direct modeling of impulsive and transient processes, and ease of inclusion of nonlinear soil behavior. The method is applicable to any arbitrarily layered silhouette presented as SH-wave velocity, damping coefficient, and mass density profiles for designated soil intervals. For nonlinear evaluations, an equivalent-linear formulation is incorporated and the standard modulus and damping degradation curves become part of the input set. Input motion can be either rock-outcrop or body-wave motions measured or estimated at the bottom of the geologic profile, and the output is the estimated ground motion time history. Application of the method to vertical array strong motion records from Garner Valley, and Wildlife Site, Calif., shows that predicted surface (and interval) ground motion is virtually identical to that measured. The differences between the results of linear and nonlinear analyses are negligible for most cases. A comparison of the time-domain model with SHAKE shows that SHAKE fails to accurately predict time histories in some situations, whereas the time-domain solution always yields satisfactory predicted surface ground motions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号