首页 | 本学科首页   官方微博 | 高级检索  
     


Gait simulation of new robot for human walking on sand
Authors:Li-xun Zhang   Ling-jun Wang   Feng-liang Wang  Ke-kuan Wang
Affiliation:College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:In order to simulate the gait of human walking on different terrains a new robot with six degrees of freedom was proposed. Based on sand bearing characteristic compliance control was introduced to control system in horizontal and vertical movement directions at the end of the robot, and position control in attitude. With Matlab/Simulink toolbox, the system control models were established, and the bearing characteristics of rigid ground, hard sand, soft sand and softer sand were simulated. The results show that 0, 0.62, 0.89 and 1.12 mm are the maximal subsidences of the four kinds of ground along the positive direction of x-axis, respectively, and 0, −0.96, −1.99 and −3.00 mm are the maximal subsidences along the negative direction of x-axis, respectively. Every subsidence along y-axis is negative, and 0, −4.12, −8.23 and −12.01 mm are the maximal subsidences of the four kinds of ground, respectively. Simulation results show that the subsidence of footboard points to inferior anterior in early stage of stand phase, while points to posterior aspect in late stage. The subsidence tends to point to posterior aspect in the whole. These results are basically consistent with the gait characteristics of human walking on sand. Gait simulation of the robot for human walking on sand is achieved.
Keywords:robot  gait simulation  sand bearing characteristic  compliance control
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号