首页 | 本学科首页   官方微博 | 高级检索  
     

碳纤维增强超高温陶瓷基复合材料的多相反应制备与抗烧蚀性能
引用本文:孙倩 张会丰 黄传兵 于守泉 杨诗瑞 房师阁 张伟刚. 碳纤维增强超高温陶瓷基复合材料的多相反应制备与抗烧蚀性能[J]. 过程工程学报, 2023, 23(2): 291-300. DOI: 10.12034/j.issn.1009-606X.222017
作者姓名:孙倩 张会丰 黄传兵 于守泉 杨诗瑞 房师阁 张伟刚
作者单位:1. 中国科学院过程工程研究所,北京 1001902. 中国科学院大学化学工程学院,北京 1000493. 中国科学院赣江创新研究院,江西 赣州 3411194. 北京动力机械研究所,北京 100074
基金项目:中国科学院绿色过程制造创新研究院项目;中国科学院赣江创新研究院自主部署项目
摘    要:为提高C/C复合材料在2000℃以上有氧环境中的抗氧化烧蚀性能,本研究采用ZrB2浆料浸渍、ZrC-SiC前驱体浸渍裂解与Si-Zr10共晶合金反应熔渗复合工艺制备了C/C-SiC-ZrB2-ZrC复合材料,细致研究了复合材料在熔渗过程中的基体微观结构演变机理及其力学性能和抗烧蚀性能。结果表明,在反应熔渗结束后的降温阶段,部分ZrC陶瓷与残余Si熔体通过原位固-液反应转化为ZrSi2和SiC,生成的亚微米级SiC颗粒均匀镶嵌于ZrC-ZrSi2二元混合物中,最终形成ZrC-ZrSi2-SiC三相混合微区。制备的C/C-SiC-ZrB2-ZrC复合材料密度为3.18 g/cm3,开孔率为2.77%,其弯曲强度和弯曲模量分别为121.46±13.77 MPa和21.78±5.56 GPa。在其断口处能观察到较长且较多的单丝纤维拔出以及明显的界面脱黏,这表明复合材料的失效方式为韧性断裂。经2000℃,300 s的大气等离子体烧蚀,复合材料表...

关 键 词:碳纤维  陶瓷基  复合工艺  微观结构  力学性能  抗烧蚀性能
收稿时间:2022-01-11

Multiphase reaction fabrication and ablation resistance of carbon fiber-reinforced ultra-high temperature ceramic matrix composites
Qian SUN Huifeng ZHANG Chuanbing HUANG Shouquan YU Shirui YANG Shige FANG Weigang ZHANG. Multiphase reaction fabrication and ablation resistance of carbon fiber-reinforced ultra-high temperature ceramic matrix composites[J]. Chinese Journal of Process Engineering, 2023, 23(2): 291-300. DOI: 10.12034/j.issn.1009-606X.222017
Authors:Qian SUN Huifeng ZHANG Chuanbing HUANG Shouquan YU Shirui YANG Shige FANG Weigang ZHANG
Affiliation:1. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China3. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341119, China4. Beijing Power Machinery Institute, Beijing 100074, China
Abstract:In this work, to improve the ablation resistance and oxidation performance of carbon fiber-reinforced carbon matrix (C/C) composites widely applied as aerospace high-temperature structural materials in an oxidizing environment above 2000℃, C/C-SiC-ZrB2-ZrC composites were fabricated by hybrid processes of ZrB2 slurry impregnation, ZrC-SiC precursor infiltration-pyrolysis and reactive melt infiltration with a Si-Zr10 eutectic alloy. The matrix microstructure and the evolution mechanism of the prepared composites were investigated in detail by phase composition, microstructure analysis, model experiments, and thermodynamic calculation. The mechanical properties and ablation resistance of the composites were tested by three-point bending tests and an atmospheric plasma torch, respectively. The results showed that in the cooling stage after infiltration, in situ solid-liquid reaction between ZrC ceramics and residual Si melt resulted in the formation of ZrSi2 and SiC, characterizing as such submicron SiC particles evenly embedded in the ZrC-ZrSi2 binary phases and finally generated a ZrC-ZrSi2-SiC complex micro-region. The obtained composites with a density of 3.18 g/cm3 and an open porosity of 2.77% showed a flexural strength of 121.46±13.77 MPa and a flexural modulus of 21.78±5.56 GPa. Moreover, numerous fibers were pulled out and obvious interfacial debonding was observed in the fracture section, indicating that the failure mode of the composites was a ductile fracture. After plasma-arc ablation at 2000℃ for 300 s, the C/C-SiC-ZrB2-ZrC composites exhibited excellent ultra-high temperature ablation behavior. The mass and linear ablation rates were 1.37×10-3 g/s and 3.43×10-3 mm/s, respectively. It was found that a unique double-layer oxide structure was formed in the ablation center. The ZrO2 layer as the inner layer can inhibit heat conduction into the internal matrix to further improve the high-temperature resistance of the composites. The composite oxide layer composed of solid-phase ZrO2 particles and liquid-phase SiO2-ZrO2 melt rich in SiO2 as the outer layer can not only resist mechanical scouring of high-speed gas flow but also inhibit the inward oxygen diffusion.
Keywords:carbon fibers   ceramic matrix   hybrid process   microstructure   mechanical properties   ablation resistance  
点击此处可从《过程工程学报》浏览原始摘要信息
点击此处可从《过程工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号