首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进时间卷积网络的短期光伏出力概率预测方法
引用本文:邢晨,张照贝. 基于改进时间卷积网络的短期光伏出力概率预测方法[J]. 太阳能学报, 2023, 44(2): 373-380. DOI: 10.19912/j.0254-0096.tynxb.2021-1033
作者姓名:邢晨  张照贝
作者单位:上海电力大学计算机科学与技术学院,上海 200090
基金项目:国家自然科学基金(61872230; 61802248; 61802249); 上海市科委项目(20020500600)
摘    要:为提高光伏出力的预测精度,提出基于改进时间卷积网络的短期光伏出力概率预测方法。首先,通过递归特征消除确定特征数量,采用分组整合方法进行特征选择;然后,采用变分模态分解处理光伏出力序列;最后,构建一种结合注意力机制的改进时间卷积网络预测模型,得到未来时刻不同分位数下的预测值,再利用核密度估计得到概率密度曲线。实验结果表明,提出方法具有更高的预测精度,可有效反映光伏出力的不确定性。

关 键 词:光伏出力  预测  概率密度  变分模态分解  注意力机制
收稿时间:2021-08-30

SHORT-TERM PROBABILISTIC FORECASTING METHOD OF PHOTOVOLTAIC OUTPUT POWER BASED ON IMPROVED TEMPORAL CONVOLUTIONAL NETWORK
Xing Chen,Zhang Zhaobei. SHORT-TERM PROBABILISTIC FORECASTING METHOD OF PHOTOVOLTAIC OUTPUT POWER BASED ON IMPROVED TEMPORAL CONVOLUTIONAL NETWORK[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 373-380. DOI: 10.19912/j.0254-0096.tynxb.2021-1033
Authors:Xing Chen  Zhang Zhaobei
Affiliation:School of Computer Science and Technology, Shanghai University of Electric Power, Shanghai 200090, China
Abstract:In order to improve the accuracy of solarpower prediction, a short-term solarpower probability prediction method based on an improved temporal convolutional network is proposed. First, recursive feature elimination is used to determine the number of features, and the EGSG method is used for feature selection; then the variational mode decomposition(VMD) is used to decompose the power sequence. Finally, an improved time convolutional network prediction model combined with attention mechanism is constructed to obtain the predicted values at different quantiles in the future, the kernel density estimation is used to obtain the probability density curve. Experimental results show that the proposed method has higher prediction accuracy and can reflect the uncertainty of photovoltaic output moreeffectively.
Keywords:photovoltaic output  prediction  probability density  VMD  attention mechanism  
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号