Time Delay Estimation in Radar System using Fuzzy Based Iterative Unscented Kalman Filter |
| |
Authors: | T. Jagadesh B. Sheela Rani |
| |
Affiliation: | Technology and Business Information System Unit, Mahasarakham Business School, Mahasarakham University, Mahasarakham, 44150, Thailand |
| |
Abstract: | RSs (Radar Systems) identify and trace targets and are commonly employed in applications like air traffic control and remote sensing. They are necessary for monitoring precise target trajectories. Estimations of RSs are non-linear as the parameters TDEs (time delay Estimations) and Doppler shifts are computed on receipt of echoes where EKFs (Extended Kalman Filters) and UKFs (Unscented Kalman Filters) have not been examined for computations. RSs, certain times result in poor accuracies and SNRs (low signal to noise ratios) especially, while encountering complicated environments. This work proposes IUKFs (Iterated UKFs) to track online filter performances while using optimization techniques to enhance outcomes. The use of cost functions can assist state corrections while lowering costs. A new parameter is optimized using MCEHOs (Mutation Chaotic Elephant Herding Optimizations) by linearly approximating system non-linearity where OIUKFs (Optimized Iterative UKFs) predict a target's unknown parameters. To obtain optimal solutions theoretically, OIUKFs take less iteration, resulting in shorter execution times. The proposed OIUKFs provide numerical approximations which are derivative-free implementations. Simulation evaluation results with estimators show better performances in terms of reduced NMSEs (Normalized Mean Square Errors), RMSEs (Root Mean Squared Errors), SNRs, variances, and better accuracies than current approaches. |
| |
Keywords: | Radar system unscented kalman filter extended kalman filter optimized iterative unscented kalman filter mutation chaotic elephant herding optimization time delay estimation |
|
| 点击此处可从《计算机系统科学与工程》浏览原始摘要信息 |
|
点击此处可从《计算机系统科学与工程》下载全文 |
|