首页 | 本学科首页   官方微博 | 高级检索  
     

空气/水双冷型PV/T一体化组件实验与模拟研究
引用本文:杜涛,马进伟,何伟,方浩,陈茜茜,李葱. 空气/水双冷型PV/T一体化组件实验与模拟研究[J]. 太阳能学报, 2023, 44(1): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2021-0902
作者姓名:杜涛  马进伟  何伟  方浩  陈茜茜  李葱
作者单位:1.安徽建筑大学环境与能源工程学院,合肥 230601;2.合肥工业大学土木与水利工程学院,合肥 230009
基金项目:安徽高校协同创新项目(GXXT-2019-019); 中国科协优秀中外青年交流计划(2019年度); 安徽省教育厅高校优秀拔尖人才培育项目(2020年度); 安徽省重点研究与开发计划项目(202004a07020049); 国家自然科学基金(51606002)
摘    要:提出一种空气/水双冷型PV/T一体化组件,搭建2套测试平台开展PV/T组件的空冷、水冷、空气-水复合冷却实验,研究不同工作模式下组件的性能表现。实验结果表明:3种工作模式均可对光伏组件进行有效冷却,空冷、水冷、复合冷却模式组件综合效率分别为76.05%、74.51%、84.83%,其吸热板温度较无工质冷却模块分别可降低19.08、27.58和35.16℃。为进一步分析设计参数对PV/T组件电热特性的影响,利用ANSYS构建组件的三维数值模型,并通过实验数据验证模型的准确性。模拟显示:采用双风道翅片式结构可有效提升组件电热性能;随着环境温度的升高(10~40℃),组件的综合效率由61.85%增至80.31%。

关 键 词:太阳能  冷却系统  光伏发电  热能  数值模拟
收稿时间:2021-08-02

EXPERIMENTAL AND SIMULATION STUDY ON AIR/WATER-COOLED PV/T INTEGRATED MODULE
Du Tao,Ma Jinwei,He Wei,Fang Hao,Chen Qianqian,Li Cong. EXPERIMENTAL AND SIMULATION STUDY ON AIR/WATER-COOLED PV/T INTEGRATED MODULE[J]. Acta Energiae Solaris Sinica, 2023, 44(1): 78-84. DOI: 10.19912/j.0254-0096.tynxb.2021-0902
Authors:Du Tao  Ma Jinwei  He Wei  Fang Hao  Chen Qianqian  Li Cong
Affiliation:1. School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China;2. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
Abstract:A novel air/water-cooled PV/T integrated module is proposed in this paper. Two sets of test platforms are set up to conduct the air-cooled, water-cooled and air/water-cooled mode experiments on the PV/T module to investigate the performance of the module under various working modes. The experimental results show that the overall efficiency of modules in air-cooled, water-cooled and compound cooling mode is 76.05%, 74.51% and 84.83%, respectively. Additionally, the temperature of the heat absorbing plate can be decreased by 19.08, 27.58 and 35.16 ℃ when compared to the PV module. In order to further analyze the influence of design parameters on the electrothermal characteristics of the PV/T module, a three-dimensional numerical model is constructed by ANSYS, and the accuracy of the model is verified by the experimental data. The simulation demonstrates that the electrothermal performance of the module can be effectively enhanced through finned structure with double air ducts. Moreover, as the ambient temperature rises (10-40 ℃), the module’s overall efficiency increases from 61.85% to 80.31%.
Keywords:solar energy  cooling systems  photoelectricity  thermal energy  numerical simulation  
点击此处可从《太阳能学报》浏览原始摘要信息
点击此处可从《太阳能学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号