首页 | 本学科首页   官方微博 | 高级检索  
     

大华滑坡位移预测模型研究
引用本文:王伟,邹丽芳,周倩瑶,姜宇航,陈鸿杰,徐卫亚. 大华滑坡位移预测模型研究[J]. 长江科学院院报, 2022, 39(9): 56-64. DOI: 10.11988/ckyyb.20210462
作者姓名:王伟  邹丽芳  周倩瑶  姜宇航  陈鸿杰  徐卫亚
作者单位:1.河海大学 岩土工程科学研究所,南京 210024; 2.河海大学 岩土力学与堤坝工程教育部重点实验室,南京 210024; 3.河海大学 地球科学与工程学院,南京 211100; 4.华能澜沧江水电股份有限公司,昆明 650214
基金项目:国家重点研发计划项目(2017YFC1501100);江苏省六大人才高峰项目(JZ-008);江苏高校“青蓝工程”项目(苏教师[2020]10号)
摘    要:针对传统滑坡位移预测过程中的不足,提出了一种基于最小二乘支持向量机(LSSVM)的滑坡位移预测方法。以某流域大华滑坡为例,基于时序分析和集合经验模态分解法(EEMD)将原始序列重构为趋势项和波动项,趋势项位移受滑坡内部因素影响,采用最小二乘法与多项式方程进行拟合预测;波动项位移受库水位、降雨、地下水位等周期性因素影响,结合灰色关联度法和核主成分分析法(KPCA)对输入因子进行筛选与降维,并用粒子群算法-最小二乘支持向量机耦合模型(PSO-LSSVM)进行建模预测。最后将趋势项与周期项预测位移相加得到累计预测位移,并对模型预测精度进行定量分析。结果表明,建立的EEMD-KPCA-PSO-LSSVM组合模型预测效果良好,较传统BP神经网络、LSSVM等单一模型有着更高的预测精度,可为同类型滑坡位移预测提供新的思路。

关 键 词:水动力型滑坡  位移预测  集合经验模态分解  核主成分分析  最小二乘支持向量机  
收稿时间:2021-05-14
修稿时间:2021-07-15

A Displacement Prediction Model for Dahua Landslide
WANG Wei,ZOU Li-fang,ZHOU Qian-yao,JIANG Yu-hang,CHEN Hong-jie,XU Wei-ya. A Displacement Prediction Model for Dahua Landslide[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(9): 56-64. DOI: 10.11988/ckyyb.20210462
Authors:WANG Wei  ZOU Li-fang  ZHOU Qian-yao  JIANG Yu-hang  CHEN Hong-jie  XU Wei-ya
Affiliation:1. Geotechnical Research Institute,Hohai University,Nanjing 210024,China; 2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,Nanjing 210024, China; 3. School of Earth Sciences and Engineering,Hohai University,Nanjing 211100,China; 4. Huaneng Lancang River Hydropower Inc.,Kunming 650214,China
Abstract:A method of landslide displacement prediction based on least squares support vector machine (LSSVM) is proposed to overcome the shortcomings of traditional prediction for Dahua landslide in Lancang River basin as a case study. The original sequence is decomposed and reconstructed into trend item and fluctuation item based on time series analysis and ensembled empirical mode decomposition (EEMD). The displacement of trend item is affected by internal factors of landslide,and the least square method and polynomial equation are used for fitting prediction. The displacement of fluctuation item is affected by periodic factors such as reservoir water level,rainfall and groundwater level. The grey correlation degree method and kernel principal component analysis (KPCA) are combined to screen and reduce the dimension of input factors,and then PSO-LSSVM coupling model is used for predicting the fluctuation item. Finally,the cumulative predicted displacement is obtained by adding the predicted displacement of trend item and fluctuation item,and the model prediction accuracy is quantitatively analyzed. Results demonstrate that the EEMD-KPCA-PSO-LSSVM combined model has a sound prediction performance with higher prediction accuracy than traditional BP neural network,LSSVM and other single models.
Keywords:water-induced landslide  displacement prediction  EEMD  KPCA  LSSVM  
点击此处可从《长江科学院院报》浏览原始摘要信息
点击此处可从《长江科学院院报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号