首页 | 本学科首页   官方微博 | 高级检索  
     


Generation, Optimization, and Evaluation of Multithreaded Code
Authors:Lucas Roh  Walid A Najjar  APWim Böhm
Affiliation:Department of Computer Science, Colorado State University, Fort Collins, Colorado, 80523
Abstract:The recent advent of multithreaded architectures holds many promises: the exploitation of intrathread locality and the latency tolerance of multithreaded synchronization can result in a more efficient processor utilization and higher scalability. The challenge for a code generation scheme is to make effective use of the underlying hardware by generating large threads with a large degree of internal locality without limiting the program level parallelism or increasing latency. Top-down code generation, where threads are created directly from the compiler's intermediate form, is effective at creating a relatively large thread. However, having only a limited view of the code at any one time limits the quality of threads generated. These top-down generated threads can therefore be optimized by global, bottom-up optimization techniques. In this paper, we introduce the Pebbles multithreaded model of computation and analyze a code generation scheme whereby top-down code generation is combined with bottom-up optimizations. We evaluate the effectiveness of this scheme in terms of overall performance and specific thread characteristics such as size, length, instruction level parallelism, number of inputs, and synchronization costs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号