首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的PID型迭代学习控制增益的选取方法
引用本文:李前防,朱芳来. 基于遗传算法的PID型迭代学习控制增益的选取方法[J]. 机电一体化, 2012, 18(1): 30-35
作者姓名:李前防  朱芳来
作者单位:同济大学电子信息与工程与学院,上海,201804
基金项目:国家自然科学基金(61074009,60972035);上海重点学科项目(资助号:B004).
摘    要:针对PID型迭代学习控制算法,首先讨论了其收敛的充要条件和单调收敛的充分条件,然后给出目前利用单调收敛的充分条件确定PID增益的方法,并指出其不足。在此基础上,提出了基于遗传算法的PID型迭代学习增益选择方法(PID型GA-ILC算法)。利用该算法可以得到不满足PID迭代学习控制系统单调收敛条件但依然能使该系统单调收敛的PID增益,给出了数值仿真实例,证明了PID型GA-ILC算法的有效性。

关 键 词:迭代学习控制  遗传算法  PID学习律  单调收敛  最优设计

PID Type Iterative Learning Control with Optimal Gains Based on Genetic Algorithm
Abstract:In this paper, the necessary and sufficient condition for PtD type iterative learning control (PID-type ILC) convergence and the sufficient condition for PID-type ILC monotonic convergence are discussed. Based on the sufficient condition for monotonic convergence, the method which is used to determine the gains of PID type ILC update law is given and the shortages of such approach are discussed. After this, an approach determining the PID gains is proposed based on genetic algorithm. The achieved PID gains do not meet sufficient condition for monotonic convergence, but they can make the PID-type ILC system converge monotonically. A numerical example is given to demonstrate the effectiveness of the presented technique.
Keywords:iterative learning control GA-ILC PID type monotonic convergence optimal design
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号