首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced biogas production from anaerobic co-digestion of municipal wastewater treatment sludge and fat,oil and grease (FOG) by a modified two-stage thermophilic digester system with selected thermo-chemical pre-treatment
Affiliation:1. Division of Engineering, Saint Mary''s University, Halifax, NS, B3H 3C3, Canada;2. Department of Electrical Engineering, Royal Military College, Kingston, ON, K7K 7B4, Canada;3. Department of Electrical Engineering, University of Nevada, Reno, USA;1. School of Economics and Management, North China Electric Power University, Beijing 102206, China;2. School of Natural and Built Environments, University of South Australia, Adelaide 5001, Australia;1. School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001, Australia;2. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China;1. School of Energy and Environment, Southeast University, Nanjing 210096, China;2. Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, Southeast University, Nanjing 210096, China;3. Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, Southeast University, Nanjing 210096, China
Abstract:Anaerobic co-digestions with fat, oil and grease (FOG) were investigated in two-stage thermophilic (55 °C) semi-continuous flow co-digestion systems. One two-stage co-digestion system (System I) was modified to incorporate a thermo-chemical pre-treatment of pH = 10 at 55 °C, which was the best pre-treatment condition for FOG co-digestion identified during laboratory-scale biochemical methane potential (BMP) testing. The other two-stage co-digestion system (System II) was operated without a pre-treatment process. The anaerobic digester of each digestion system had a hydraulic retention time (HRT) of 24 days. An organic loading rate (OLR) of 1.83 ± 0.09 g TVS/L·d was applied to each digestion system. It was found that System I effectively enhanced biogas production as the thermo-chemical pre-treatment improved the substrate hydrolysis including increased COD solubilization and VFA concentrations. Overall, the modified System I yielded a 25.14 ± 2.14 L/d biogas production rate, which was substantially higher than the 18.73 ± 1.11 L/d obtained in the System II.
Keywords:Anaerobic digestion  Municipal waste  Biogas  Pre-treatment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号