首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于证据理论与神经网络的遥感影像分类方法
引用本文:彭天强,李弼程. 一种基于证据理论与神经网络的遥感影像分类方法[J]. 数据采集与处理, 2003, 18(2): 170-174
作者姓名:彭天强  李弼程
作者单位:信息工程大学信息工程学院,郑州,450002
摘    要:把影像的空间信息融入分类决策,提出了一种基于证据理论与神经网络的遥感影像分类方法。对原图像作平滑处理.得到原图像的平滑图像;利用神经网络对原图像及其平滑图像分别进行训练、分类;利用证据理论对它们的分类结果(决策)进行融合;最后,把融合结果(决策)作为原图像的最终分类结果。实验结果与性能比较表明.新方法是有效的.提高了影像的分类精度。

关 键 词:遥感影像分类方法 证据理论 神经网络 模式识别 图像处理
文章编号:1004-9037(2003)02-0170-05
修稿时间:2002-06-10

A Remote Sensing Image Classification Method Based on Evidence Theory and Neural Networks
PENG Tian-qiang,LI Bi-cheng. A Remote Sensing Image Classification Method Based on Evidence Theory and Neural Networks[J]. Journal of Data Acquisition & Processing, 2003, 18(2): 170-174
Authors:PENG Tian-qiang  LI Bi-cheng
Abstract:Neural networks are widely used in remote sensing image classification. The spatial information of the image and evidence theory is applied to classification of remote sensing image based on neural networks. It can significantly increase classification accuracy. Firstly, the original image to be classified is smoothed to obtain a smoothed image. Secondly, artificial neural networks (ANNs) are used to train and classify the original image and its smoothed image, respectively. Thirdly, the two classification outputs of ANN are fused with evidence theory. Finally, the fused result is considered as the classification result of the original image. Experimental results show that the new method is very efficient, and the classification accuracy is greatly improved compared with the classic ANN method.
Keywords:BP neural networks  classification of remote sensing image  smoothed image  evidence theory  information fusion
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号