首页 | 本学科首页   官方微博 | 高级检索  
     


A bounded distance metric for comparing tree structure
Authors:Richard Connor  Fabio Simeoni  Michael Iakovos  Robert Moss
Affiliation:Department of Computer and Information Sciences, University of Strathclyde, Glasgow G1 1HX, Scotland, UK
Abstract:Comparing tree-structured data for structural similarity is a recurring theme and one on which much effort has been spent. Most approaches so far are grounded, implicitly or explicitly, in algorithmic information theory, being approximations to an information distance derived from Kolmogorov complexity. In this paper we propose a novel complexity metric, also grounded in information theory, but calculated via Shannon's entropy equations. This is used to formulate a directly and efficiently computable metric for the structural difference between unordered trees. The paper explains the derivation of the metric in terms of information theory, and proves the essential property that it is a distance metric. The property of boundedness means that the metric can be used in contexts such as clustering, where second-order comparisons are required. The distance metric property means that the metric can be used in the context of similarity search and metric spaces in general, allowing trees to be indexed and stored within this domain. We are not aware of any other tree similarity metric with these properties.
Keywords:Unordered tree   Tree comparison   Distance metric   Algorithmic information theory   Information content   Information distance   Entropy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号