首页 | 本学科首页   官方微博 | 高级检索  
     


Eigenfeature regularization and extraction in face recognition
Authors:Jiang Xudong  Mandal Bappaditya  Kot Alex
Affiliation:School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Link, Singapore. exdjiang@ntu.edu.sg
Abstract:This work proposes a subspace approach that regularizes and extracts eigenfeatures from the face image. Eigenspace of the within-class scatter matrix is decomposed into three subspaces: a reliable subspace spanned mainly by the facial variation, an unstable subspace due to noise and finite number of training samples and a null subspace. Eigenfeatures are regularized differently in these three subspaces based on an eigenspectrum model to alleviate problems of instability, over-fitting or poor generalization. This also enables the discriminant evaluation performed in the whole space. Feature extraction or dimensionality reduction occurs only at the final stage after the discriminant assessment. These efforts facilitate a discriminative and stable low-dimensional feature representation of the face image. Experiments comparing the proposed approach with some other popular subspace methods on the FERET, ORL, AR and GT databases show that our method consistently outperforms others.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号